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ABSTRACT

An algorithm is described for solving large-scale nonlinear

programs whose objective and constraint functions are smooth and con-

tinuously differentiable. The algorithm is of the augmented Lagrangian

type, involving a sequence of sparse, linearly constrained subproblems

whose objective functions include a modified Lagrangian term and a modified

penalty function.

The algorithm has been implemented in a general purpose Fortran

code called MINOS/AUGMENTED. The system is intended for use on problems

whose Jacobian matrix is sparse. (Such problems usually include a large

set of purely linear constraints.) The bulk of the data may be assembled

using a standard linear-programming matrix generator. Function and gradient

values for all nonlinear terms are supplied by two user-written subroutines.

Some aspects of the implementation are described in detail, and

computational results are given for some nontrivial test problems.

Assuming convergence occurs, the work involved is comparable to the

solution of a moderate number of linear programs of similar size.
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1. INTRODUCTION

The work reported here was prompted by consideration of various ways

to extend the linearly constrained optimization code MINOS (Murtagh and

Saunders [13]) to include the capability of solving nonlinearly constrained

proLlems. In particular we are concerned with large, sparse problems, in the

sense that each variable is associated with relatively few constraints.

Ignoring sparsity for the moment, consider the model problem

minimize f (x)

subject to f(x) = 0, Z < x < u

where the functions of x are assumed to be twice differentiable with

bounded Hessians. For this problem the algorithm discussed here would solve

a sequence of linearly constrained subproblems of the form

min L(x,xAk, p) = f 0 (x) _ X(f -) + 10 (f_ T(f - _f) (l.2a)

s.t. f = 0, Z < x < u (1.2b)

where f is a linear approximation to f(x) at some point . (Thus

f -f + Jk(x where f and J are the constraint vector and

- +k x) -k Jk

Jacobian matrix evaluated at X.) With p = 0, subproblem (1.2) corresponds

to that used by Robinson [20]. The same subproblem (with p - 0) is used

in Phase 2 of Rosen's algorithm [21].

The expression (l.2a) will be called a modified augmented Lagrangian.

When ak and X are taken to be the solution and corresponding Lagrange

multipliers for the previous subproblem, Robinson has shown for the case
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= 0 that the sequence (xk, k P will converge quadratically to a solu-

tion of the original pro ,lem (1.1) as long as the initial pair (o, 0) is

sufficiently close to that solution. A case for which convergence can be

expected is when the modified Lagrangian L(. , x , X , 0) is convex. Since

this is not always true, the penalty term involving 0 is included here

to ensure that the Hessian of L(x, 4, Ak , P) is positive definite within

an appropriate subspace. It also inhibits large discrepancies between f

and f, thereby discouraging large changes in x in each subproblem if

the nonlinearities are such that the linearized constraints have little

meaning far from the point of linearization. As always, the intention is

to allow convergence from a wider range of starting points. Use of (1.2)

represents an alternative to Phase 1 of Rosen's algorithm [21] in which

(l.2a) is replaced by f0(x) + 1 pfTf and the linearized constraints

f = 0 are deleted from (l.2b).

The reason for choosing the modified penalty in (1.2a) rather than
1 T

the conventional I Pf Tf will become clear when sparsity is reintroduced.

1.1. Subproblems

It has been argued in the past that the need to solve linearly

constrained subproblems is a drawback of methods such as Robinson's. How-

ever when projection (or reduced-gradient or variable-reduction) methods

are used we would take the view that linearly constrained subproblems are

actually easier to solve than the unconstrained subproblems encountered

in other Lagrangian- and penalty-based methods. (Certainly the implemen-

tation is more complex but with linear constraints present the optimization

2



usually takes place in a subspace of much smaller dimension.)

For a certain class of objective functions, the development of MINOS

has opened the way to solving large linearly constrained problems quite

efficiently. Hence for large versions of problem (1.1) involving a sparse

Jacobian matrix and many purely linear constraints, it is natural to apply

MINOS to the corresponding subproblems (1.2). The resulting extension of

MINOS is called MINOS/AUGMENTED and is documented in [14]. Our aim is to

describe the algorithm used and some details of its practical implementation,

and to discuss its performance on some nontrivial problems.

Note that the Lagrangian and penalty terms in (l.2a) require continual

evaluation of the nonlinear constraint functions during the solution of (1.2).

In some cases this may be expensive. MINOS/AUGMENTED therefore allows the option

of setting X = 0 and p = 0 so that only f (x) remains in (l.2a).-k -

Some results obtained using this option are also reported.

The MINOS code for linearly constrained optimization is briefly

described in Section 2, and Section 3 discusses the method for handling

nonlinear constraints. Details of the computer implementation are described

in Section 4, and Sections 5 and 6 present some test problems and a discussion

of their solution.

2. BRIEF DESCRIPTION OF MINOS

MINOS solves problems expressed in the following standard form:

minimize f(x) + c Tx + dT (2.1)

subject to A b (2.2)

3



< u ~l (2.3)

where A is m by n, m < n, and the variables are partitioned into "non-

linear" and "linear" variables x and y respectively. (This standard form

is a slight generalization of the one normally used for linear programming

problems; it emphasizes the fact that nonlinearities in the objective function

often involve just a few of the variables x.)

For numerous practical reasons the last m columns of A form the

identity matrix I, and the last m components of y are the usual logical

("slack" or "surplus") variables.

MINOS uses an "active constraint" strategy, with the general con-

straints and some portion of the bound constraints being active at any given

time. Thus if . is partitioned as [B S N] where N is a set of "non-

basic" columns, the active constraints are always of the form

B S N - 4 -'_Bb'I b (2.4)

The first part of this equation is equivalent to

while the second part reading N b indicates that the nonbasic vari-
-N

ables iN are being held equal to one or other of their bounds. (The com-

ponents of b come from X or u as appropriate and the partition

[ B S, S ] is some permutation of [x,x].)

4
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The remaining columns of A are partitioned into "basic" and

"superbasic" sets B and S, such that the basis matrix B is square and

nonsingular. The corresponding basic and superbasic variables xB and

are free to vary between their bounds during the next iteration.

It can readily be shown that an optimal solution of the above form

exists for which the number of superbasic variables is less than or equal

to the number of nonlinear variables.

2.1. Some Aspects of the Algorithm Used in MINOS

The operators

A SZ = i 1  (2.5)

0

will be useful for descriptive purposes. The active constraints (2.4) are

of the form Ax = b, and Z happens to satisfy AZ = 0.

Under suitable conditions a feasible descent direction p may be

obtained from the equations

zTGZPs =-zT , p (2.6)

T
(see [6]). In particular, if the reduced gradient Z T is nonzero, and if

the reduced Hessian Z TGZ is positive definite (or if any positive definite

matrix is used in place of Z TGZ), then the point x + ap lies on the

active constraints and some scalar a > 0 exists for which the objective

function has a lower value than at the point x.



Other matrices Z exist satisfving AZ = 0, but he form ChOsn

above, together with a sparse LU factorizatiori Of B. allows eftficient

T -l
computation of the products Z T, and Zp S . (Neither B nor Z is

computed.) A positive-definite approximation to Z TGz is maintained in

the form R TR where R is upper triangular. Quasi-Newton updates to R

lead to superlinear convergence.

Let the gradient of the objective function (2.1) be the vector

= (-B 9S N) T " If 7 satisfies

BT = B (2.7)

it is easily seen that the reduced gradient is

zT gs -T (.'.8)

Hence in linear programming terminology the reduced gradient is obtaind bv

"pricing" the superbasic columns S. This is a cheap operation once

has been computed.

Likewise for p we have R TRPs = -zT g and then

B_ 1 -Sp

Ps -- -- (2.9)

so most of the work lies in solving BpB -S (The value PN = 0 indi-

cates that no change will be made to the current nonbasic variables. As

long as the reduced gradient Z T is nonzero, only the variables in [B S]

6



are optimized. If any such variables encounter an upper or lower bound

they are moved into N and the partition [B S1 is suitably redefined.)

Note that if the reduced gradient does prove to be zero (Z g = )

the reduced objective has reached its optimal value. If we compute

=N - NT: (i.e. the usual pricing of nonbasic columns) we then have

S T  _I (2.10)

so that 7 and o are exact Lagrange multipliers for the current active

constraints. The components of o indicate whether any nonbasic variables

should be released from their bounds. If so, one or more are moved from N

into S and optimization continues for the new set [B S1. If not, an

optimum has been obtained for the original problem.

In practice, optimization for each [B S] will be curtailed when

Z Tg is sufficiently small, rather than zero. In this case 7 will be

just an approximation to the Lagrange multipliers for the general constraints.

The accuracy of n will depend on the size of 11Z Tg[l and on the condition

number of the current basis B.

2.2. Key Points

The algorithm implemented in MINOS provides a natural extension of

linear programming technology to problems whose objective function is non-

linear. If the number of nonlinear variables is moderate (or more precisely,

7
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if the number of superbasic variables and hence the dimension of R is

moderate) then the work per iteration is not substantially greater than for

one iteration of the revised simplex method on the same dataxj x1
A =b, Z < <

Y Y

Here we assume that the cost of evaluating the objective function

and its gradient is moderate compared to manipulation of a sparse factori-

zation of the basis matrix B. At the same time it is important that the

step-size a be determined efficiently. The line-search procedure used

in MINOS is that of Gill, Murray et al. (171), which allows the user to

control the accuracy of the search by means of a parameter ETA, where

0.0 < ETA < 1.0. Even with a relatively accurate search (e.g. ETA = 0.01)

the number of function and gradient evaluations required is typically very

few (e.g. 1, 2 or 3 per search). This is increasingly beneficial for the

algorithm discussed next, where the objective function is modified to

include an arbitrary number of uonlinear functions.

3. EXTENSION TO NONLINEAR CONSTRAINTS

3.1. Statement of the Problem

It is assumed that the nonlinearly constrained problem can be

expressed in the following standard form:

8



minimize f0(x) + cTx + dT (3.1)

subject to f(x) + A1y = b I (m rows) (3.2)

A 2 x + A3  =2 (m2  rows) (3.3)

< _ < u m = mI +m 2  (3.4)

m

where f(x) = [f (x) , f x)]. The first n1  variables x are

again called "nonlinear variables." They occur nonlinearly in either the

objective function or the first m1  constraints. There may be purely

linear constraints, given by (3.3). As before, a full set of slack variables

is included as the last m components of the "linear variables" y, so

that general equality and inequality constraints can be accommodated in (3.2)

and (3.3) by means of suitable bounds in (3.4).

We shall assume that th\' functions f i(x) are twice continuously

differentiable with gradients i(x) and bounded Hessians G Cx), i = 0,1,..., m1 .

We shall also assume that the 1st and 2nd order Kuhn-Tucker conditions hold

for a local minimum x* with corresponding X*.

The solution process consists of a sequence of "major iterations,"

each one involving a linearization of the nonlinear constraints at some

point kk, corresponding to a first-order Taylor's series approximation:

fi (x) = fi() + 1 )T ( ) + O x - I 2

We thus define

f(xf) - +(k) + J(X)(x -

or

f + J(x X ),(3.5)

9
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where 3 (x) is the (m x n ) Jacobian matrix whose ij-th element is

3f /bx.. We then see that

- f = ( - - - k) (3.)

consists of the higher order ("nonlinear") terms in the Taylor's expansion

of f(x) about the point x k

3.2. The Linearized Subproblem

At the kth major iteration the following linearly constrained sub-

problem is solved:

0 T T T 1
minimize L(x,yk,X, p) = f (x) + c x + d Y - X (f- f) + - P(f - f) (f - f) (3.7)

k -+c 2 _

subject to f + AIy = b, , (3.8)

A2x + A3y X b2 ' (3.9)

[ I < u .(3.10)Y< ---

The derivative of the objective function with respect to x is

aL = =(x 94 9, V)  = (x ) + c (J-J - P(f - (3.11)
x - -k k  o( ~!+ 3 i

We see that the nonlinearities in L involve x but not y. (In contrast the

normal penalty function would involve the constraint violation

f + AIy - b in place of f - f.) This represents a vital advantage of

the modified augmented Lagrangian (3.7), since it means that each linearized

subproblem has the same number of nonlinear variables as the original

10



problem. The dimension of the reduced Hessian for the subproblem is there-

fore bounded in the same way as for the original problem, i.e., by the

dimension of x (cf. Theorem 1 of [13]).

The use of a penalty term to ensure the augmented Lagrangian

maintains a positive-definite Hessian in the appropriate subspace was

first suggested by Arrow and Solow [2] and adopted later by, among others,

Hestenes [10] and Powell [16] in their sequential unconstrained procedures,

and by Sargent and Murtagh [23] in conjunction with their "variable-metric

projection" algorithm involving a sequence of linearized constraints. The

modified penalty term has not been used elsewhere since no distinction has

been made previously between linear and nonlinear variables. Note that the

modified penalty is identical to the conventional penalty in the subspace

defined by the linearized constraints.

3.3. Choice of A

The choice X = 0, p = 0 corresponds to simple sequential lineari-

zation of the nonlinear constraints with no additional terms to f 0(x) in

the objective function. We shall call this the 'Newton strategy,' although

it should not be confused with applying Newton's method to the Kuhn-Tucker

equations for a solution of (3.1)-(3.4).

Ideally, X k should be as close as possible to X*, but of course

the optimal multipliers are normally unknown. The simplest choice is

= X, the multipliers corresponding to linearized constraints at the

solution of the previous subproblem. As we shall see, this choice is the

best of several alternatives. For convenience suppose there are no linear

Tconstraints, so that A - w is the solution of B T - & at the end of

the previous major iteration. We know that w also satisfies sT -.&S

11



(at least to within the converzen-e tolerance used for the subprobhlue)

We thus have T
s T _&s

and it is immaterial which variables are in B and which are in S. Now

g is zero for all slack variables and it follows immediately that

i = 0 if the ith linearized constraint is inactive. The choice = k

therefore ensures that an apparently inactive nonlinear constraint will

T
be excluded from the Lagrangian term XT(f - f) in the next subproblem.

This is a desirable property.

It may seem that a better approximation to X* could be obtained

by evaluating the new Jacobian J(3) which is required anyway for the

next subproblem. Let the resulting "new" [B S] be denoted by [B S].

One possibility is to define X as the solution of the least-squares

problem

gT gs

where the rhs is still the "old" gradient vector for the previous augmented

Lagrangian. However, this least-squares problem would be very expensive

to solve for large problems. Furthermore it is not guaranteed that Xi = 0

would result where desired.

A cheaper alternative would be to solve BT = .B and take

A= r, but then A, = 0 for inactive constraints would be assured only
-:Ik -

if the corresponding slack variable happened to be basic and not superbasic.

If the new B is to be used, the method of Sargent and Murtagh [23]

shows that

12
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-TB A -1 B + [I 0 OIGL Ax

would produce the correct multipliers for the solution of the new subproblem

if the original objective and constraints were quadratic and GL was an

adequate approximate to the Hessian of the new Lagrangian. (See equation

(12) in [131.) However, this again is not a practical alternative for

large problems.

3.4. Choice of p

It is well known that x* need not be a local minimum of the

Lagrangian function (with p = 0). If we assume that J(x*) is of full

rank, then A* exists and is such that

L(x,X) = f 0x) + c Tx +dT _ X T[f + A1y - b

is stationary at (x*,X*), but L(x*,X*) may well display negative

curvature in x at x*.

The most that can be said [26] is that, if we consider the con-

straints satisfied at x* as equalities and ignore the inactive ones, then

a necessary (sufficient) condition that x* is a local minimum is

T L

Z(x*)T al (x*,X*) - 0

and

z(X*)T a2--L (x*,A*)Z(x*)

ax2

is positive semidefinite (positive definite), where Z(x*) is as defined

13



in equation (2.5) using J(x*) in the appropriate part of A.

Thus if we restrict our search to he linearly constrained sub-

space defined by Z(x*) we do indeed seek a minimum of the Lagrangian, and

we may expect that when xk is sufficiently close to x* for J(xk)

to be close to J(x*) we may minimize (3.7) with o = 0. This is confirmed

by Robinson's theorem on quadratic convergence [201.

Difficulty arises when 4 is far removed from x*, since the

linearized constraints may define a subspace where perhaps a saddle-point

would be closer to x* than a minimum would be. Successive minima of

(3.7)-(3.10) with p = 0 may therefore fail to converge to x*. The

addition of a penalty term p[f-f] T[f-f] imposes the correct curvature

properties on (3.7) for a sufficiently large p > 0.

For general nonconvex problems it is not practical to determine

a priori what the appropriate order of magnitude p should be (indeed

p = 0 is often adequate even in the nonconvex case). The more important

consideration is when to reduce p to zero, for we know that there is a

radius of convergence around (x*,X*) within which Robinson's theorem

holds for p = 0, and we can then expect a quadratic rate of convergence.

Two parameters we can monitor at the solution x to each linearized

subproblem are the constraint violation or 'row error',

IIf() + Al - bl II - f(x

and the change in multiplier estimates, ii - Xl • The question that

arises is whether these can be used to provide adequate measures of con-

vergence toward x*.

For simplicity, consider the equality-constrained problem

14-
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PO: minimize f (x)

subject to f(x) = 0

where the functions of x are twice continually differentiable with

bounded Hessians. We shall assume that at some point x* the Jacobian

J(x*) is of full rank, there exists a A* such that f O/ax = J(x*) T*,
and the reduced Hessian Z(x*)T 22L(x*,X*)/ax2 Z(x*) is positive

definite (i.e the sufficiency conditions are satisfied for x* to be a

local optimum).

Theorem 1.

Let (xk, Xk) be an approximate solution to P0 and let

(x,X) be a solution to the linearized subproblem

S: minimize fO(x) - A(f- f) + P(f - f)T(f - f)

subject to f(x,4) 0

If X - X = Cl and f(x) = L2, then (x,X) is also a solution to the

perturbed problem

0 TP: minimize f (x) + (Ci + Oi2)T (f - )

subject to f(x) --E2

for sufficiently small l and _2

15
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Proof. If (x,\) is a solution of S1 we must have f = 0 and

O - - Jk)Tk+ P(j _ Jk)T(f f) = Tk -L k k

where Jk is the Jacobian at k but J, f and f are evaluated at x.

T-
Adding (J - k to both sides and inserting the expressions for 1 and

E2 gives

T + - T =
0 (x) + (J -ik) T ~ ik

which shows that (x,X) also satisfies the conditions for a stationary

point of P Now it can be shown that the Hessians for the Lagrangian

functions of S1 and P1 differ only by the amount p(J - Jk)T(i - k

2
at the solution of PI. which is of order A11AxIlk where = -

Hence for sufficiently small El' E2 and Ax, if the reduced Hessian of

S1  is positive definite at x then by continuity the reduced Hessian of

P1 will also be positive definite, thus satisfying the sufficiency con-

ditions for a local minimum of P at x. 0

It is of interest to examine the corresponding result for the

conventional penalty term.

Theorem 2. Let (4Xk) be an approximate solution to P0 and let

(x,A) be a solution to the linearized subproblem

16

_ _7-4



$ minimize f0 x) - (f f) + - PfT

subject to f(x,_k) = 0.

If X - k *- l and f(x) - L2, then (x,X) is also a solution to the

perturbed problem

P minimize f0(x) + _(f - f) + PTf

subject to f(x) e

Proof. Analogous to the proof of Theorem 1. 0

Again it follows that if -L and 2 are sufficiently small,

(x,X) will be within the radius of convergence of Robinson's theorem and p

can safely be reduced to zero. A point of interest is that problem P1

appears to be less sensitive than P2  to deviations from its optimum.

Thus, let Ax be an arbitrary small change to the solution x of PI.

The objective function for P1  then differs from the true objective

fO(x) by an amount

61 (.I + P 2) T(ff _ )

1611 (11-L111 + P11 211) oil 112 .

For P2 the analogous deviation is

17



T T (f - f) + T f
2 1

T T 2

f f) + :2(f + J' x + OH LX ;)
- -2

< II lll + p-t 1 2 ) o11 K 1 2 + C) 1 2 _r

Sine-1i -2ore _1al2 2

Since is of order 11 AxIl while ,52  is of order 11 %xil , it

appears that the modified penalty term in S1  has a theoretical advantage

over the conventional penalty term of S2 .

3.5. Summary of Procedure

The cycle of major iterations can be described as follows:

Step 0. Set k = 0. Choose some initial estimates 40, 0 and specify

a penalty parameter P > 0 and a convergence tolerance F c > 0.

Step 1. (a) Given Xk, Ak and p, solve the linearly constrained problem

(3.7)-(3.10) to obtain new quantities 4+l' yk+l and S(4+1) .

T
(b) Solve B T_ =

(c) Set X = the first m1  components of _t.
-k_+l1

Step 2. (a) Test k+l for convergence. If optimal, exit.

(b) If 11f(4+l) +Alyk+l -bl I/(l+ il(+l,yk+l)l) < and

II 1 k+l - 1kll/( 1 X l) <c ,then set p = 0.

kl -k -zk+l - c

(c) Relinearize the constraints at 4+1,

(d) Set k - k+l and repeat from Step 1.

This procedure would not be complete without an algorithm for increasing the

penalty parameter in certain circumstances. In Step 2(b) of the present imple-

mentation, we raise p by some factor if the relative change in X k proves

to be very large.

18
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4. COMPUTER IMPLEMENTATION

4.1. Sparse Matrices

Using equation (3.5), the linearized constraints (3.8) can be

expressed in the form:

J + A y = hI + Jk2 - fk (4.1)

where f = f(T ) 1he terms on the right-hand side of (4.1) are constant and
-k

become part of "b", the current right-hand side. The set of linear constraints

"Ax = b" for each major iteration is thus of the form:

J k Al -[ x i + Jk~k - f 
(4 2

= (4.2)
A 2  A 3 - - -t 2-

The major implication of A being large and sparse is that efficient

methods are available for forming and updating an LU factorization of the

basis matrix B (cf. equation (2.4)). (In particular, a "bump and spike"

algorithm [9] is used to preserve sparsity at each refactorization of B.

This occurs at the start of every relinearization and occasionally thereafter

as necessary. At each intervening change of basis the LU factors are updated

using the scheme described by Saunders [24] to preserve both sparseness and

numerical stability.)

4.2. Infeasible Subproblems

One of the difficulties with sequential linearization is that some

of the linearized subproblems may prove to be infeasible. In particular,

the point (4,yk) used to define subproblem k is usually not a feasible
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straints (4.1) in the form

Jk x + - = b 1 + " kX - fk +  q

where ,nt  is a perturhat ion to the right-hand side,. if (x ,v k is th<---k --k

final fas ible point from subproblem k - 1, we can show *hat it will IIso

be feasible with respect to the new linearizCd onstraintS (->.') it I

and _q = f(x k ) - f(xkXk-l). (Thus F is the valu -of -f - f at , 1end

of the previous major iteration.)

In MINOS/AUGMENTED the right-hand side of (4.3) is initialized with

1

y = 0. If the subproblem proves to be infeasible we add - q to the right-

hand side and continue the solution process. If there is still no feasiblc

1 1
solution we add 1 q, 1 q and so on. This simulates the sequence of values

1 3 7
-=, 2' 4 -8' "' tending to 1 as desired.

If the above procedure fails after 10 modifications, or if it is

not applicable (e.g. when k = 0 or the previous subproblem was infeasible),

a new linearization is requested as long as at least one minor iteration

has been performed. Otherwise the algorithm is terminated with the assump-

tion that the original problem itself is infeasible.

In [21], Rosen guards against infeasible subproblems by linearizing

perhaps only some of the nonlinear constraints, namely those that have been

active or reasonably close to active at any earlier stage. This alternative

could be implemented in MINOS/AUGMENTED by adjusting the bounds on the slack

variables associated with the linearized constraints.

20
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4.3. User Options

Various implementition options are discussed in the following

sections. Capitalized keywords at the head of each sect ion iI11tluiltre

the input data needed to select any particular option. Fuller details

are given in the user's manual [14].

4.4. Subroutines CALCFG and CALCON

VERIFY OBJECTIVE GRADIENT

VERIFY CONSTRAINT GRADIENTS

As in the linearly constrained version of MINOS, a user-written

subroutine CALCFG is required to calculate the objective function f (x)

and its gradient. The Lagrangian terms in (3.7) are calculated internally.

The user also supplies a subroutine CALCON to define the constraint

vector f(x) and the current Jacobian J(x). The nonzeros in J are

returned column-wise in an output vector and must be in the same order

as the corresponding entries in the MPS file (see below).

Subroutine CALCON is called every time the constraints are linearized.

Except for Newton's method it is also called one or more times each line-

search to allow computation of (3.7) and (3.11). The expense of evaluating

the constraints and their gradients should therefore be taken into account

when specifying the linesearch accutacy.

Note that every function and Jacobian element is computed in every

call to CALCON. Although some of these values may effectively be wasted

(e.g. if some of the constraints are a long way from being active), the

resulting simplicity of the subroutine from the user's point of view cannot

be overemphasized.
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Since the programming of gradients is notoriously prone to error,

the VERIFY option is an essential aid to the user. This requests a check

on the output from CALCFG and/or CALCON, using finite differences of f 0(x)

or f(x) along the coordinate directions. The check is performed at the

first feasible point obtained (where feasibility is with respect to the

first linearized subproblem). This point will not satisfy the nonlinear

constraints in general, but at least it will satisfy the linear constraints

and the upper and lower bounds on x. Hence it is usually possible to

avoid singularities in the nonlinear functions, both in the gradient check

and in subsequent iterations.

4.5. Jacobian Option

JACOBIAN = SPARSE or DENSE

The submatrices Al. A A and vectors bl, b in equation (4.2)
A1 2, A3  :-' -2

are constant data and so may be entered using a standard MPS input file,

as in linear programming, whereby only the nonzero coefficients and their

row locations are entered column-by-column. Since we envisage that the

Jacobian submatrix J will also be large and sparse we use the same

scheme for recording the row and column locations of the nonzeros. Thus

(with JACOBIAN = SPARSE) the sparsity pattern of J is entered as part

of the MPS file. The corresponding numerical values in the MPS file may

be genuine coefficients (if they are constant) or else dummy values,

such as zero. Each call to subroutine CALCON subsequently replaces all

dummy entries by their actual value at the current point x.

22



Of course the intention here is to allow use of standard matrix

generators to specify as much of the constraint matrix as possible. Pin-

pointing the nonzeros of J by name rather than number has the usual

advantages, and in subroutine CALCON some code of the form

LJAC - LJAC + 1

G(LJAC) = ...

is usually adequate to define the next nonzero in a column of the Jacobian,

without explicit reference to any row or column numbers. Nevertheless,

the user is effectively required to give the sparsity pattern twice (in

the MPS file and in CALCON), and it is essential that mismatches be

avoided. At present the VERIFY option is the only aid to detecting

incompatibility.

In the interest of simplicity, the option JACOBIAN = DENSE allows

J to be treated as a dense matrix. In this case the MPS file need not

specify any elements of J, and subroutine CALCON can use assignment

statements of the form G(I,J) = ... to specify JiJ by row and column

number. The danger of mismatches is thereby eliminated, but the storage

requirements may be excessive for large problems. It may also give rise

toan unnecessarily large "bump" in the basis factorizations.

4.6. Partial Completion

COMPLETION - PARTIAL or FULL

"Partial completion" is a compromise between the two extremes of

relinearizing after each linesearch and solving each subproblem to high

accuracy ("full completion").
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The idea of attaining only partial completion at each major iteration

can be accomodated effectively via the convergence tolerances. MINOS uses

relatively loose tolerances for minimizing the reduced objective, until it

appears that the optimal partition [B S N] has been identified. The

partial completion option is effected by terminating a major iteration at

this stage.

Otherwise for full completion the normal optimization procedure is

continued using tighter tolerances to measure the change in x, the size

of the reduced gradient ( 1i zg/1i), etc. This usually gives only small

changes in x and w without changing the partition [B S N).

An alternative means for achieving partial completion for early

major iterations is via the MINOR ITERATION limit (see Section 4.8).

4.7. Lagrangian Option, Penalty Parameter

Newton Strategy: LAGRANGIAN NO

PENALTY PARAMETER 0.0

With this option the constraint functions and gradients are evaluated only

once per major iteration.

Augmented Lagrangian: LAGRANGIAN YES

PENALTY PARAMETER p (p > 0)

Here the constraints and Jacobian are evaluated as often as the objective.

Evaluation of the augmented Lagrangian and its gradient with p > 0 is

negligibly more expensive than with p = 0
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4.8. Convergence Conditions

MAJOR ITERATIONS 60

MINOR ITERATIONS 40

RADIUS OF CONVERGENCE E (P 10-
2)

C

ROW TOLERANCE Er ( 10 -
6 )

r

Apart from terminating within each major iteration, we also need a

terminating condition for the cycle of major iterations (Step 3, Section 3.5).

The point (kyk) is assumed to be a solution to the nonlinearly

constrained problem (3.1)-(3.4) if both the following conditions are

satisfied:

1. (Xkk) satisfies the nonlinear constraints (3.2) to within a pre-

defined error tolerance, i.e.

If ( -k -e T I < cr ( I + 11(4,y i = i ... ,m

2. (4k,4) satisfies the first-order Kuhn-Tucker conditions for a

solution to the linearized problem.

The tolerance parameter c is specified by the user, and wasr

set equal to 10-6 for most of the test problems described in the subsequent

sections.

If the "partial completion" option is used, then once these two

criteria are satisfied, a switch to "full completion" is invoked to obtain

an accurate solution for the current subproblem, as well as for any possible

further linearizations.

25
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The error tolerance is used to define a radius of convergcnce
C

about (x*,:*) within which Robinson's theorem is assumed to hold. If

the row error defined above and the relative change in Lagrange multipliers

between successive subproblems are both less than , in magnitude tiern

the penalty term is dropped (i.e. . is set to 0.0).

The MINOR ITERATION limit is used to terminate each linearizcd sub-

problem when the number of linesearches becomes excessive. The limit of

40 was used in all the numerical experiments. A much small number would

result in more frequent use of expensive housekeeping operations such as

the refactorization of B in Step 3, Section 3.5. Similarly a much larger

number may be wasteful; if significant changes to x have occurred then

a new linearization is appropriate, while if there has been little progress

then updating the Lagrangian information gives some hope of more rapid

progress.

It must be noted that for some choices of O, A 0 and P the

sequence of majo. iterations may not converge. The MAJOR ITERATION limit

provides a safeguard for such circumstances.

For a discussion of linearly constrained Lagrangian methods and

their drawbacks see Wright [26], pp. 137-147.

In the present implementation of MINOS/AUGMENTED the only recourse

would be to restart with a different initial x or a larger value for

the penalty parameter p (or both).
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5. TEST PROBLEMS

Most of the text examples reported here appear in the published

literature. The last two examples are new and are described in detail.

They can be made arbitrarily large by increasing one parameter.

5.1. Colville No. 2

This well known problem is one of the more testing of the Colville

series of problems [3] and has been used frequently to compare different

algorithms [1], [8], [20], [23]. It has a cubic objective function and 15

quadratic constraints. Even in this small problem the variables can be

partitioned into linear and nonlinear sets, of dimension 10 and 5

respectively.

a) Feasible starting point.

b) Infeasible starting point.

5.2. Colville No. 3

This problem has a quadratic objective function of five variables

and three quadratic constraints. It also has upper and lower bounds on

all the variables, and upper and lower limits on the constraints. These

can be accommodated effectively by using the BOUNDS and RANGES options

in the MPS file; the BOUNDS option allows variables to be nonbasic at

their upper or lower bound, and the RANGES option assigns both upper

and lower bounds to the slack variables associated with the constraints

(thus allowing the right-hand side to range between bounds).
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a) Feasible starting point.

b) Infeasible starting point.

5.3. Colville No. 8

This is a typical process design problem, where some of the vari-

ables are determined by solving nonlinear equations. It has 3 independent

variables and 7 constraints.

5.4. Powell's Problem [17]

This has 5 variables and 3 constraints. Although small, this is a

good test problem as the nonlinearities in the constraints are quite

significant.

minimize exp(x 1 x2x3x4x5 )

subject to x + x + x 2 + x 2 + x 2 = 10
1 2 3 4 5

x2x3 - 5x4x 5 = 0

3 3x1 +x 2 -

Starting point: (-2, 2, 2, -1, -1).
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5.5. Power Scheduling

This is a comparatively large test problem reported recently

by Biggs and Laughton [4], with 79 variables and 91 constraints (all non-

linear). It also has upper and lower bounds on some of the variables.

Although all the variables and constraints are nonlinear, the linearized

constraint matrix Jk (equation 4.3) is quite sparse with on average a

little under 6 nonzero row entries per column. Treating it as a dense

matrix could result in a "bump" of 79 columns, which is clearly undesirable.

A number of minor discrepancies between Biggs and Laughton's paper and

the original statement of the problem [25] were resolved by using the

original data.

5.6. Launch Vehicle Design

This problem appears in Bracken and McCormick's book on nonlinear

programming applications [5] and also appears in [22]. There are 12 linear

constraints and 10 nonlinear constraints, and the Jacobian of the nonlinear

constraints is quite sparse (density 23%),yielding an overall matrix

density of 15%. All 25 variables are nonlinear.

5.7. Quartic with Quartic Constraints

This problem appears in Pierre and Lowe [15]. Only a few terms

are quartic, the remainder being predominantly quadratic. It has 20

variables (all nonlinear) and 17 constraints, 13 of which are nonlinear.
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5.8. Dembo No. 7

This is one of Dembo's set of 8 Geometric Progr.-mminw test

problems [28]; in particular, it required the most computation time in

Dembo's results. Other authors have reported difficulty with the

problem (Powell [29], Coope and Fletcher [27]). There are 16 variables

(all nonlinear) and 19 general constraints (11 of thcm nc nlincar).

The solution has a few primal and dual degeneracies, but it is essentially

at a vertex of the constraint space (i.e., a vertex of the final

linearization).

5.9. Wright No. 4 [261

This is a highly nonlinear non-convex problem for which four local

minima have been determined.

minimize (x1- 1) 2 + (x x2)2 + (x2-x3) + (x3x4)4 + (x4-x5)

subject to x + x2 + X_ 2 +3
1 2 + 3

x - x2 + x = -2 + 2/-2,

X1x5  2

Starting points:

(a) (1,1,1 1,1)

(b) (2,2,2,2,2)

(c) (-1,3,-1/2,-2,-3)

(d) (-1,2,1,-2,-2)

(e) (-2,-2,-2,-2,-2)
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Local optima:

x*(l) = (1.11663, 1.22044, 1.53779, 1.97277, 
1.79110)

T

x*(2) = (-2.79087, -3.00414, .205371, 3.87474, -.716623)
T

x*(3) = (-1.27305, 2.41035, 1.19486, -.154239, 
-1.57103)

T

x*(4) = (-.703393, 2.63570, -.0963618, -1.79799, -2.84336)

1.10. Wright No. 9 [26]

This is another highly nonlinear example.

2 3 423

minimize loXX - 6x x2 + xx3 + 9 sin(x x + x4x2
1 4 3 2 2 1 si~ 5 - 3 )+ 5 4 2

subjec to x2 + x2 + x2+ 2+ X2<2
sujctt 2 3 4 <20,

X2 x + X x > -2
x1x3  4

2
x2x 4 +lOXlx >5

Starting points:

(a) (1,1,1,1,1)

(b) (1.091, -3.174, 1.214, -1.614, 2.134)

Local optima:

x*(1) - (-.0814522, 3.69238, 2.48741, .377134, .173983)
T

x*(2) - (1.47963, -2.63661, 1.05468, -1.61151, 2.67388)
T

With the barrier trajectory algorithm, Wright [26] obtained convergence

to x*(l) from (a) and convergence to x*(2) from (b). Note that starting

point (b) was originally chosen to cause difficulty for the barrier

algorithm and other methods that retain feasibility throughout.
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5.11. Optimal Control

This problem investigates the optimal control of a spring, mass

and damper system. It is adapted from [191. While it is acknowledged

that there may be simpler ways of solving the problem by taking

specific advantage of the nature of the constraints, it serves the present

purpose of providing a large,sparse test problem.

1T 2

minimize f(x,y,u) = 2 x t
t=0

subject to xt+1 = x t + 0.2y t

= - - O.O2 4x + 0.2u t = 0,..., T-1,Yt+l Yt OOy-04t t "'

-0.2 < u < 0.2

Yt > -1.0

x0 = 10, YO = 0, Y 1 
= 0 .

Starting point: xt = 0, yt = -1, t = I,..., T.t

For the results below we set T 1 100. There are thus 202 nonlinear

variables (x t yt' t - 0,..., 100) and 100 linear variables

(ut, t = 0,..., 99). There are also 100 quadratic constraints and 100

linear constraints. Note that the nonlinear constraints are very sparse,

with only 4 nonzeros per row.
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The solution is dominated to a large extent by the lower bound

on t the optimal yt decreases with increasing t and remains at

-1.0 from t = 20 to t = 40, and then increases again, goes slightly

positive and settles to 0.0 at t = 100. The corresponding values of

x can be calculated directly from the linear constraint xt+l x + 0.2v

The optimal value of the objective is x!x V 2/2 = 1186.382.

5.12. Economic Growth Model (Manne [11])

This is a model for optimizing aggregate consumption over time.

The variables are Ct, It and K t which represent consumption, investment

and capital in time period t for t = I,..., T.

T
Utility function: maximize 7 B log C

t=l

Kb
Nonlinear constraints: a K > C + I 1 < t < Tt t- t t'

Linear constraints: Kt+ 1 ( Kt + It  < t < T

gKT < IT

Bounds: K1  I0 + K

Kt  1 0 + K0

C t >C

1< t <T
I t> 10

i t  (l.04)t'1
0
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Data: = 0.95, h 0.25, L.o3,

Co  = 0.95, I = 0.0), K =

S except
t

(t1-b) t 
=

t .il+g)
( -  where J (C + I )/K

The objective function (regarded as a minimand) and the nonlinear con-

straints are both convex and separable. The same is true of the preceding

optimal control problem. These examples should therefore be useful test

problems for more specialized convex programming algorithms.

For test purposes we have used T = 100, which gives a problem

with 200 general constraints and 300 variables. The optimal value of

the utility function is 9.287547. All general constraints are active

at the solution, and the first 74 upper bounds on I are also active.t

It should be mentioned that specialized methods are known to

economists for solving this problem, with and without the upper bounds

("absorptive capacities") on the variables I . However in more practical

circumstances the model would be imbedded in a much larger mod&' for

which an analytical solution is not known. If the larger model contains

no additional nonlinearities, the performance of MINOS/AUGMENTED should

degrade only in proportion to the problem size.
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6. RESULTS AND DISCUSSION

MINOS/AUGMENTED is implemented in standard FOrtrin. Various

options can be selected at run-time by means of a SPECS file, and 'n

initial point 0 can be specified by an INITIAL BOUNDS set in the file

containing the constraint data. The latter is defined in the well-knovn

MPS format used by comnmrcial mathematical programming systems.

The following parameter values were used throughout:

LINESEARCH PARAMETER ETA = 0.1 (moderately accurate search)

RADIUS OF CONVERGENCE = 0.01 (C in Section 3.5)
c

-6
ROW TOLERANCE = 10 (c in Section 4.7)r

MINOR ITERATIONS LIMIT = 40 (not active on small examples)

Run-times are reported below in order to allow comparison among various

algorithmic options.

6.1. Problems 5.1-5.8

These examples were solved on a CDC Cyber 70. In all cases con-

vergence was obtained with zero penalty parameter p. The results are

summarized in Table 6.1. In general the partial completion option converged

more rapidly than full completion. However example 5.4 illustrates that

fewer major iterations are likely if subproblems are solved accurately

once the correct subspace has been identified. This was observed in

several other cases and is probably explained by the discussion of Xk

in Section 3.3. In terms of total run-time the Newton strategy was often

superior, but it failed to converge on problems 5.4 and 5.5. This deficier

becomes more prominent in the examples below.
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Problem 5.8 was run with two different minor-iteration limits

(3 and 40, which could have been 3 and 15 without altering the comparison).

The results illustrate that terminating major iterations early can some-

times help rather than hinder.

6.2. Problems 5.9-5.12

The results for these examples were obtained on an IBM 370/168

using the Fortran H Extended compiler with full optimization (OPT = 3).

Computation was performed in double precision, but the constraint data

were sLored in single precision, including Jk in the linearization of

-6
f(x). This limits the achievable constraint error to about 10 , but

that is usually adequate in practice. Full completion was used throughout.

Problem 5.9 (Wright No. 4)

This highly nonlinear problem illustrates the difficulties discussed

in Section 3.4 when no penalty term is used. The Newton strategy and the

Lagrangian algorithm with P = 0 both gave rise to subproblems which

changed radically each major iteration.

The results using the Lagrangian algorithm with p = 10 and

p = 100 are shown in Table 6.2.

Infeasible subproblems were encountered with starting point (e)

using the penalty parameter p = 10, but the procedure discussed in

Section 4.6 successfully overcame this difficulty. Case (e) was also the

only one for which the larger p was important in stabilizing progress from

the starting point to the solution.
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6.3. Problem 5.10 (Wright No. 9)

Again the Newton strategy and the Lagrangian algorithm with c - 0

failed to converge. Results for the Lagrangian algorithm with o - 10

and P = 100 are shown in Table 6.3.

Starting point (a) (b)

p 100I 10 100I 10
4- 4
i i

Major itns 12 I 9 5 I 19

Total itns 92 i71 32 i 201
Functions 183 I 146 61 I 386

Solution x*(1)i x*(l) x*(2)I x*(3)

Table 6.3. Results for Test Problem 5.10

A value of p = 10 is almost too low for starting point (b), the

subproblem solutions changing radically as they did for p = 0, but finally

converging to a new local optimum, x*(3) = (-.07427, -3.69170, 2.48792,

0.37693, 0.18446)T .

In general the results for these last two problems are inferior to

those obtained by Murray and Wright [12], [26] with their trajectory

algorithms, in terms of total function evaluations. However, the difference

is less than a factor of 4 in all cases, and averaged 2.2 over the seven

starting points.

39



6.4. Problem 5.11 (Optimal Control)

Despite the large size of this problem both the Newton strategy and

tie Lagrangian algorithm with P = 0 converged rapidly.

Method N L (0 = 0)

Major itns 6 6

Total itns 254 247

Functions 213 203

Time (secs) 10.55 11.56

Table 6.4. Results for Test Problem 5.11

Recall that procedure N evaluates the constraint functions only once per

major iteration (in this case 6 times compared to 203 times for procedure L).

If f(x) were more costly to computethe time advantage would be that much

greater. The Lagrangian algorithm displayed insensitivity to nonzero

values of p in the range 0.01-10.0, taking the same iterations and cal-

culations as shown in Table 6.4.
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6.5. Problem 5.12 (Economic Growth)

Although this is also a convex problem the Newton strategy led to

oscillation and no convergence. The Lagrangian algorithm did converge

rapidly with c = 0. Without the upper bounds It < (1.04) tI0 it required

11 major iterations, 355 minor iterations, 859 function calculations and

34.3 seconds, and there were 99 superbasic variables at the optimal solution.

However when these bounds were imposed, the optimal number of superbasics

was only 25 and convergence was obtained in 7 major iterations, 183 minor

iterations, 497 function calculations and 11.9 seconds. This illustrates

the gains that are made when the presence of constraints reduces the di-

mensionality of the optimal subspace.

As an experiment on the effect of p on the rate of convergence the

problem was solved several times with different values of p in the range

10-4 < p < 1.0. (The tolerance c for dropping p was set to zero,

thus forcing p to stay constant for each run.) The results are shown in

Figure 1. This is a plot of minor iterations versus log of the constraint

violation or "row error," log 0 11 f(x) + A1Y - b[11. , immediately following

relinearization. The dots represent the end of each major iteration.

Initially these occur every 40 iterations (the MINOR ITERATIONS limit) but

later subproblems were solved accurately before the limit was reached. In

fact the number of minor iterations reduces rapidly to only one or two per

subproblem as convergence is approached. This behavior was also observed

in all of the preceding examples.

It can be seen that higher values of p give lower row errors at

the end of the first major iteration (as we would expect), but they lead

to consistently slower convergence. It is interesting to note that rapid
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0 reduced from 1.0 to 0.0

-2-

100 200 1O40

P -0.0

Figure 1. Solution of problem 5.12 using various values for the penalty

parameter p. The constraint violation, log 10 fJf(x) +A1y- tlllc,

is plotted against minor iteration number. Dots signify

the end of each major iteration.
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convergence does occur ultimately in all cases (except for P = 1.0

which was terminated after 500 iterations). However this is not until the

correct active constraints have been identified, by which time k is

very close to the optimum and the penalty term is having a negligible

effect on the Lagrangian and its reduced gradient.

These results confirm that the benefit of Robinson's proof of

quadratic convergence for the case p = 0 cannot be realized unless p

is actually reduced to zero as soon as precautions allow.

The dotted line in Figure I shows the result for p = 1.0 (the

worst case) with c set to 0.01, allowing p to be reset to zero at thec

start of major iteration 3. (Note that on the highly nonlinear examples 5.9

and 5.10, the same value of c ensured that p was not set to zero until

a near optimum point was reached. This was the desired effect since the

multiplier estimates X were changing radically in the early major
-k

iterations.)

It will be seen in Figure 1 that the row error increases sharply

once p is reset to zero. This is consistent with the algorithm suddenly

being free to take a large step. We could therefore regard the first two

major iterations as having served to verify that the problem is only

mildly nonlinear.

7. CONCLUSIONS

Many real-life optimization problems originate as linear programming

models that are not quite linear; i.e. they contain simple, differentiable

functions in the constraints and objective, but otherwise the constraint set
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is large, sparse and linear. For such problems the Jacobian matrix is is,,

likely to be sparse, and the strategy of solving a sequence of linearly -on-

strained subproblems has many advantages. This is clear from the results

obtained for the larger test problems above.

For convex problems the Lagrangian term in the objective of the sub-

problems is usually necessary to ensure convergence. The Newton strategy

performed adequately without it on some occasions, but in general the saving

in run time will seldom be substantial.

For non-convex problems, both the Lagrangian and the penalty term

are clearly useful but the actual choice of the penalty parameter

remains a critical decision for the user. In practice, optimization problems

are often solved repeatedly on a production basis. In this situation it is

worthwhile experimenting with different values of the parameters and toler-

ances (and perhaps with the Newton strategy). However the case of an isolated

problem with unknown characteristics is no less important. A conservative

(high) value of p is then virtually mandatory. One of our aims has been

to minimize the risk of subsequent slow convergence by determining an

opportune time to reduce p to zero. The analysis in Section 3.4 has

suggested a practical procedure for achieving this aim. In particular,

the "radius of convergence" tolerance E c (applied to both the constraint

violation and the relative chatige in the estimates of X) allows early

removal of p in moderately nonlinear cases but otherwise retains it until

convergence to a local solution is imminent.

The results reported here should provide a benchmark for measuring

the performance of other algorithms and their implementations. Clearly no

single algorithm can be expected to perform uniformly better than all others

in such a diverse field as nonlinearly constrained optimization. As it
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happens, MINOS/AUGMENTED has proved to be reasonably efficient on small,

highly nonlinear problems, but more importantly, it represents an

advance in the development of general-purpose software for large-scale

optimization.
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